교차검증1 [머신러닝] 하이퍼 파라미터 튜닝, Cross validation 📚 Hyperparameter란 일반적으로 모델에서 학습을 통해서 값이 결정되는 값을 파라미터라고 한다. 이 중에서 사용자가 값을 결정할 수 있는 파라미터를 하이퍼 파라미터라고 부른다. 하이퍼파라미터는 여러 가지 값을 대입해 보면서 최적의 값을 선택해야 한다. 이렇게 파라미터 값을 변경하면서 최적 값을 찾는 과정을 "모델 튜닝" 이라고 부른다. 📌주의점! 하이퍼 파라미터 튜닝 시, test set을 사용해서는 안된다. Test set은 모델의 최종 성능 평가를 위해서 사용되므로 모델의 학습 과정에서는 절대 사용되어서는 안된다. 따라서 validation set을 추가하여 사용해야 한다. 📚 K-fold crossvalidation Cross validation은 모델 과적합을 감소시키고 모형의 일반화 가.. 2022. 4. 18. 이전 1 다음